Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539825

RESUMO

The amino acid transporters SLC38A5 and SLC7A11 are upregulated in triple-negative breast cancer (TNBC). SLC38A5 transports glutamine, methionine, glycine and serine, and therefore activates mTOR signaling and induces epigenetic modifications. SLC7A11 transports cystine and increases the cellular levels of glutathione, which protects against oxidative stress and lipid peroxidation via glutathione peroxidase, a seleno (Se)-enzyme. The primary source of Se is dietary Se-methionine (Se-Met). Since SLC38A5 transports methionine, we examined its role in Se-Met uptake in TNBC cells. We found that SLC38A5 interacts with methionine and Se-Met with comparable affinity. We also examined the influence of Se-Met on Nrf2 in TNBC cells. Se-Met activated Nrf2 and induced the expression of Nrf2-target genes, including SLC7A11. Our previous work discovered niclosamide, an antiparasitic drug, as a potent inhibitor of SLC38A5. Here, we found SLC7A11 to be inhibited by niclosamide with an IC50 value in the range of 0.1-0.2 µM. In addition to the direct inhibition of SLC38A5 and SLC7A11, the pretreatment of TNBC cells with niclosamide reduced the expression of both transporters. Niclosamide decreased the glutathione levels, inhibited proliferation, suppressed GPX4 expression, increased lipid peroxidation, and induced ferroptosis in TNBC cells. It also significantly reduced the growth of the TNBC cell line MB231 in mouse xenografts.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834119

RESUMO

Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.


Assuntos
Ferroptose , Receptores sigma , Receptores sigma/metabolismo , Heme/metabolismo , Receptores de Progesterona/metabolismo , Ferro , Homeostase
3.
Front Mol Biosci ; 10: 1141081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911528

RESUMO

P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.

4.
Protein Sci ; 32(5): e4635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36992534

RESUMO

Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration, we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations due to Debye-Huckel screening and a nonspecific territorial ion-binding effect. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occur in the transition state. After the transition state formation, modest yet favorable short-range salt bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over 1 billion years.


Assuntos
Dobramento de Proteína , Domínios de Homologia de src , Termodinâmica , Peptídeos/química , Proteínas/química , Simulação de Dinâmica Molecular , Ureia , Cinética
5.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993259

RESUMO

Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net-charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the 60-residue yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations according to the Debye-Huckel limiting law. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occurs in the transition state. After the transition state formation, modest yet favorable short-range salt-bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over one billion years. Statement for broader audience: Some protein domains are highly charged because they are adapted to bind oppositely charged proteins and nucleic acids. However, it is unknown how these highly charged domains fold as during folding there will be significant repulsion between like-charges. We investigate how one of these highly charged domains folds in the presence of salt, which can screen the charge repulsion and make folding easier, allowing us to understand how folding occurs despite the protein’s high charge. Supplementary material: Supplementary material document containing additional details on protein expression methods, thermodynamics and kinetics equations, and the effect of urea on electrostatic interactions, as well as 4 supplemental figures and 4 supplemental data tables. ( Supplementary_Material.docx ), 15 pages Supplemental excel file containing covariation data across AbpSH3 orthologs ( FileS1.xlsx ).

6.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36765717

RESUMO

Niclosamide, a drug used to treat tapeworm infection, possesses anticancer effects by interfering with multiple signaling pathways. Niclosamide also causes intracellular acidification. We have recently discovered that the amino acid transporter SLC38A5, an amino acid-dependent Na+/H+ exchanger, activates macropinocytosis in cancer cells via amino acid-induced intracellular alkalinization. Therefore, we asked whether niclosamide will block basal and SLC38A5-mediated macropinocytosis via intracellular acidification. We monitored macropinocytosis in pancreatic and breast cancer cells using TMR-dextran and the function of SLC38A5 by measuring Li+-stimulated serine uptake. The peptide transporter activity was measured by the uptake of glycylsarcosine. Treatment of the cancer cells with niclosamide caused intracellular acidification. The drug blocked basal and serine-induced macropinocytosis with differential potency, with an EC50 of ~5 µM for the former and ~0.4 µM for the latter. The increased potency for amino acid-mediated macropinocytosis is due to direct inhibition of SLC38A5 by niclosamide in addition to the ability of the drug to cause intracellular acidification. The drug also inhibited the activity of the H+-coupled peptide transporter. We conclude that niclosamide induces nutrient starvation in cancer cells by blocking macropinocytosis, SLC38A5 and the peptide transporter. These studies uncover novel, hitherto unknown, mechanisms for the anticancer efficacy of this antihelminthic.

7.
Methods Mol Biol ; 2507: 337-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773591

RESUMO

Normal functions of cell-surface proteins are dependent on their proper trafficking from the site of synthesis to the cell surface. Transport proteins mediating solute transfer across the plasma membrane constitute an important group of cell-surface proteins. There are several diseases resulting from mutations in these proteins that interfere with their transport function or trafficking, depending on the impact of the mutations on protein folding and structure. Recent advances in successful treatment of some of these diseases with small molecules which correct the mutations-induced folding and structural changes underline the need for detailed structural and biophysical characterization of membrane proteins. This requires methods to express and purify these proteins using heterologous expression systems. Here, using the solute carrier (SLC) transporter NaCT (Na+-coupled citrate transporter) as an example, we describe experimental strategies for this approach. We chose this example because several mutations in NaCT, distributed throughout the protein, cause a severe neurologic disease known as early infantile epileptic encephalopathy-25 (EIEE-25). NaCT was modified with various peptide tags, including a RGS-His10, a Twin-Strep, the SUMOstar domain, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. When transiently expressed in HEK293 cells, recombinant NaCT proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited citrate transport activity similar to the nontagged protein. Surface NaCT expression was enhanced by the presence of SUMOstar on the N-terminus. The dual-purpose peptide epitopes RGS-His10 and Twin-Strep facilitated detection of NaCT by immunohistochemistry and western blot and may serve useful tags for affinity purification. This approach sets the stage for future analyses of mutant NaCT proteins that may alter protein folding and trafficking. It also demonstrates the capability of a transient mammalian cell expression system to produce human NaCT of sufficient quality and quantity to augment future biophysical and structural studies and drug discovery efforts.


Assuntos
Simportadores , Animais , Transporte Biológico , Membrana Celular/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Simportadores/genética
8.
Front Mol Biosci ; 8: 734169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869581

RESUMO

Disordered proline-rich motifs are common across the proteomes of many species and are often involved in protein-protein interactions. Proline is a unique amino acid due to the covalent bond between the backbone nitrogen and the proline side chain. The resulting five-membered ring allows proline to sample the cis state about its peptide bond, which other residues cannot do as readily. Because proline-rich disordered sequences exist as ensembles that likely include structures with the proline peptide bond in cis, a robust methodology to accurately account for these conformations in the overall ensemble is crucial. Observing the cis conformations of proline in a disordered sequence is challenging both experimentally and computationally. Nitrogen-hydrogen NMR spectroscopy cannot directly observe proline residues, which lack an amide bond, and computational methods struggle to overcome the large kinetic barrier between the cis and trans states, since isomerization usually occurs on the order of seconds. In the current work, Gaussian accelerated molecular dynamics was used to overcome this free energy barrier and simulate proline isomerization in a tetrapeptide (KPTP) and in the 12-residue proline-rich SH3 binding peptide, ArkA. We found that Gaussian accelerated molecular dynamics, when combined with a lowered peptide bond dihedral angle potential energy barrier (15 kcal/mol), allowed sufficient sampling of the proline cis and trans states on a microsecond timescale. All ArkA prolines spend a significant fraction of time in cis, leading to a more compact ensemble with less polyproline II helix structure than an ArkA ensemble with all peptide bonds in trans. The ensemble containing cis prolines also matches more closely to in vitro circular dichroism data than the all-trans ensemble. The ability of the ArkA prolines to isomerize likely affects the peptide's ability to bind its partner SH3 domain, and should be studied further. This is the first molecular dynamics simulation study of proline isomerization in a biologically relevant proline-rich sequence that we know of, and a similar protocol could be applied to study multi-proline isomerization in other proline-containing proteins to improve conformational diversity and agreement with in vitro data.

9.
Metabolites ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677384

RESUMO

INDY (I'm Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2- in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2-. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues.

10.
Biochem J ; 478(11): 2051-2057, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34101804

RESUMO

NaCT (SLC13A5) is a Na+-coupled transporter for citrate, which is expressed in the liver, brain, testes, and bone. It is the mammalian homolog of Drosophila INDY, a cation-independent transporter for citrate, whose partial loss extends lifespan in the organism. In humans, loss-of-function mutations in NaCT cause a disease with severe neurological dysfunction, characterized by neonatal epilepsy and delayed brain development. In contrast with humans, deletion of NaCT in mice results in a beneficial metabolic phenotype with protection against diet-induced obesity and metabolic syndrome; the brain dysfunction is not readily noticeable. The disease-causing mutations are located in different regions of human NaCT protein, suggesting that different mutations might have different mechanisms for the loss of function. The beneficial effects of NaCT loss in the liver versus the detrimental effects of NaCT loss in the brain provide an opportunity to design high-affinity inhibitors for the transporter that do not cross the blood-brain barrier so that only the beneficial effects could be harnessed. To realize these goals, we need a detailed knowledge of the 3D structure of human NaCT. The recent report by Sauer et al. in Nature describing the cryo-EM structure of human NaCT represents such a milestone, paving the way for a better understanding of the structure-function relationship for this interesting and clinically important transporter.


Assuntos
Simportadores , Animais , Transporte Biológico , Encéfalo/metabolismo , Ácido Cítrico , Microscopia Crioeletrônica , Transportadores de Ácidos Dicarboxílicos/genética , Humanos , Masculino , Camundongos , Mutação , Simportadores/genética
11.
Chem Rev ; 121(9): 5359-5377, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040525

RESUMO

NaCT (SLC13A5; mINDY), a sodium-coupled citrate transporter, is the mammalian ortholog of Drosophila INDY. Loss-of-function mutations in human NaCT cause severe complications with neonatal epilepsy and encephalopathy (EIEE25). Surprisingly, mice lacking this transporter do not have this detrimental brain phenotype. The marked differences in transport kinetics between mouse and human NaCTs provide at least a partial explanation for this conundrum, but a structural basis for the differences is lacking. Neither human nor mouse NaCT has been crystallized, and any information known on their structures is based entirely on what was inferred from the structure of VcINDY, a related transporter in bacteria. Here, we highlight the functional features of human and mouse NaCTs and provide a plausible molecular basis for the differences based on a full-length homology modeling approach. The transport characteristics of human NaCT markedly differ from those of VcINDY. Therefore, the modeling with VcINDY as the template is flawed, but this is the best available option at this time. With the newly deduced model, we determined the likely locations of the disease-causing mutations and propose a new classification for the mutations based on their location and potential impact on transport function. This new information should pave the way for future design and development of novel therapeutics to restore the lost function of the mutant transporters as a treatment strategy for patients with EIEE25.


Assuntos
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Simportadores/química , Simportadores/metabolismo , Animais , Sítios de Ligação , Drosophila , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
12.
Biochem J ; 477(21): 4149-4165, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33079129

RESUMO

The Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY) in the liver delivers citrate from the blood into hepatocytes. As citrate is a key metabolite and regulator of multiple biochemical pathways, deletion of Slc13a5 in mice protects against diet-induced obesity, diabetes, and metabolic syndrome. Silencing the transporter suppresses hepatocellular carcinoma. Therefore, selective blockers of NaCT hold the potential to treat various diseases. Here we report on the characteristics of one such inhibitor, BI01383298. It is known that BI01383298 is a high-affinity inhibitor selective for human NaCT with no effect on mouse NaCT. Here we show that this compound is an irreversible and non-competitive inhibitor of human NaCT, thus describing the first irreversible inhibitor for this transporter. The mouse NaCT is not affected by this compound. The inhibition of human NaCT by BI01383298 is evident for the constitutively expressed transporter in HepG2 cells and for the ectopically expressed human NaCT in HEK293 cells. The IC50 is ∼100 nM, representing the highest potency among the NaCT inhibitors known to date. Exposure of HepG2 cells to this inhibitor results in decreased cell proliferation. We performed molecular modeling of the 3D-structures of human and mouse NaCTs using the crystal structure of a humanized variant of VcINDY as the template, and docking studies to identify the amino acid residues involved in the binding of citrate and BI01383298. These studies provide insight into the probable bases for the differential effects of the inhibitor on human NaCT versus mouse NaCT as well as for the marked species-specific difference in citrate affinity.


Assuntos
Inibidores Enzimáticos/farmacocinética , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Animais , Ácido Cítrico/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Especificidade da Espécie , Simportadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...